LHC Electroweak

Michael Schmitt Northwestern University PAVI09 26 – June – 2009

How might the LHC change this picture?

topics

- the LHC and the LHC experiments
- what to expect (hope for) this coming year
- top quark mass measurements
- W mass measurements
- Z forward-backward asymmetries
- closing

many other electroweak topics left out:

- W, Z cross sections
- di-boson production / tri-linear couplings
- W polarization in top decays
- the Higgs boson

The LHC and the LHC Detectors

LHC : Large Hadron Collider

- two colliding proton beams
- up to 7 TeV per beam
- multiple acceleration stages
- most collisions are initiated by *gluons*, not quarks
- for W production, $X_{Bj} \approx 10^{-3}$
- heavy ion program runs alternately with pp collisions
- beams cross every 25 ns
- O(10⁸) collisions per sec
- transverse size O(10 μm)

Relative beam sizes around IP1 (Atlas) in collision

CMS

CMS

ELECTONS

- 80k lead-tungstate crystals
- granularity 0.0175 x 0.0175
- cover barrel & end caps
- no cracks
- 26 X_0 thick
- avalanche photodiodes
- $\sigma(E)$ / E = 0.006 at 100 GeV

MUONS

- four "stations" provide four segments
 - drift tubes in barrel
 - cathode strip chambers in end caps
 - resistive plate chambers for trigger
- fields up to 2 T allow p measurement
- combined with tracks in tracker: $\sigma(p_T) / p_T = 0.015 \text{ at } 100 \text{ GeV}$

LHC : First Beams, Sept. 2009

- 7-8 September
 - Single shots of beam 1 onto closed collimator 150m upstream of CMS
- 9 September
 - Additional single shots of beam 1 onto collimator 150m upstream
- 10 September (Media Day!)
 - Beam 1 circulated in the morning, 3 turns by 10:40am (in 1 hour!)
 - Beam 2 circulated by 3:00pm, 300 turns by 11:15pm
- 11 September
 - RF system captures beam at 10:30pm (millions of orbits)
- 19 September
 - magnetic incident

- During all of these activities, CMS triggered and recorded data
 - ~40 hours of beam to CMS
 - All systems on, except for Tracker and Solenoid

individual muon end cap cathode strip chambers

"Beam Halo" events: <u>muons come</u> in parallel to the beam.

There are many very clean events, such as this one.

26-June-2009

We carried out a serious cosmic ray data taking exercise (Oct 08)

- The data have allowed us to commission the hardware to an unprecedented degree.
 - tracker & muon alignment
 - calorimeter uniformity
- Several publications will come out this fall.

Run 66748, Event 8900172, LS 160, Orbit 167345832, BX 2011

The First Run: 2009-2010

Prospects for Beam

The LHC run will be long, and should deliver at least <u>200 pb⁻¹ per experiment</u>.

Month	Comment	Turn around time	Availability	Max number bunches	Protons/Bunch	Min beta*	Peak Luminosity cm ⁻² s ⁻¹	Integrated Luminosity
1	Beam commissioning							First collisions
2	Pilot physics, partial squeeze, gentle increase in bunch intensity, 40%	Long	Low	43	3 x 10 ¹⁰	4 m	1.2 x 10 ³⁰	100 - 200 nb ⁻¹
3		5	40%	43	5 x 10 ¹⁰	4 m	3.4 x 10 ³⁰	~ 2 pb ⁻¹
4	2.5% nominal beam intensity	5	40%	156	5 x 10 ¹⁰	2 m	2.5 x 10 ³¹	~13 pb ⁻¹
5		5	40%	156	7 x 10 ¹⁰	2 m	4.9 x 10 ³¹	~25 pb ⁻¹
6	9% nominal beam intensity, 75 ns	5	40%	936	3 x 10 ¹⁰	2 m	5.1 x 10 ³¹	~30 pb ⁻¹
7	15% nominal beam intensity, 75 ns	5	40%	936	5 x 10 ¹⁰	2 m	1.4 x 10 ³²	~75 pb ⁻¹
8	15% nominal beam intensity, 75 ns*	5	40%	936	5 x 10 ¹⁰	2 m	1.4 x 10 ³²	~75 pb ⁻¹
9	15% nominal beam intensity, 75 ns*	5	40%	936	5 x 10 ¹⁰	2 m	1.4 x 10 ³²	~75 pb ⁻¹
10	lons							
							TOTAL	~300 pb ⁻¹

What can we expect to do with first collisions?

Typical Standard Model processes

Process	σ (nb)	Events
		(∫Ldt = 100 pb⁻¹)
Min bias	10 ⁸	~10 ¹³
bb	5×10 ⁵	~10 ¹²
Inclusive jets	100	~10 ⁷
p _⊤ > 200 GeV		
$W \rightarrow ev, \mu v$	15	~10 ⁶
$Z \rightarrow ee, \mu\mu$	1.5	~10 ⁵
tt	0.8	~104

Yields are very high compared to the Tevatron

Benchmark: Z boson signal with the first 10 pb⁻¹

- select pairs of electrons or muons
- about 5k events selected in each channel
- Z peak is prominent over backgrounds from top, W+jets, tau pairs
- backgrounds estimated from data, efficiencies measured from data
- signal yield will be better known than the luminosity

Benchmark: W boson signal with the fitst 10 pb⁻¹

- select electron or muon and significant missing energy, MET (for the neutrino)
- about 30k electron, 60k muon events
- missing energy distribution calibrated from the Z di-lepton events
- multi-jet backgrounds estimated from data

 $Ldt = 10 \text{ pb}^{-1}$

electrons

Signal+Bkgd 🔵

 $W \rightarrow ev$

di-jets

γ+jets

 $W \rightarrow \tau v$

ŧŦ

• "isolation" of lepton is the key

CMS Preliminary

Events / 1.00 GeV

800

600

400

200

Õ

26-June-2009

20

10

30

40

50

60

70

160

Benchmark: top quark signal with first 200 pb⁻¹

- cleanest topology: both W's decay to leptons (e or μ)
- demand missing energy as expected from the neutrinos
- apply a loose b-tag to greatly reduce multi-jet backgrounds
- signal-to-background is tremendous!
- cross section at 10 TeV is about 55% lower than at 14 TeV
- statistical uncertainty on cross section measurement would be roughly 10%

Benchmark: W charge asymmetry with 100 pb⁻¹

parity
violation!
$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \bar{\nu}_{\mu}) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu_{\mu})}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \bar{\nu}_{\mu}) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \nu_{\mu})}$$

Variation of W+/W- ratio with angle (rapidity) depends on u/d ratio.

prospective measurement with 100 pb⁻¹

select muons following the W cross section measurement:

 $p_T > 20 \text{ GeV}$ | η | < 2.0

- Z sample will allow all efficiencies to be measured to better than 1%
- near-ideal alignment achievable with 100 pb-1
- backgrounds are small with essentially no intrinsic asymmetry

top quark mass

top quark signals

reminder: Tevatron Results

- many measurements combined
- overall consistency is good
- best measurements are in the "semi-leptonic" channel
- result is now systematics limited main systematic is the jet energy scale, which is constrained by the W peak
- much better than anticipated in 1998...

M_t = 173.1 ± 0.6 (stat) ± 1.1 (syst) GeV

Run I: $M_t = 174.3 \pm 3.2$ (stat) ± 4.0 (syst) GeV

C Electroweak/Schmitt

top mass at the LHC

- follow the methods developed at the Tevatron
- focus mainly on the "semi-leptonic" channel
- the cross section is 100 times larger
 - 10⁸ top quark pairs produced in 1 fb⁻¹
- CMS, 10 fb⁻¹:
 - fit the kinematics of each event
 - event-by-event likelihood as function of M_t
 - $\Delta M = 0.2 \text{ GeV}$ (stat), 1.1 GeV (syst)
- ATLAS, 1 fb⁻¹:
 - $\Delta M = 0.4 \text{ GeV}$ for calorimeter calibration of 1%
 - $\Delta M = 0.7$ GeV for b-jet energy scale uncertainty of 1%
 - $\Delta M = 0.3 \text{ GeV}$ for initial/final state radiation

ATLAS: top->3 jets

- use the leptonic W decay to trigger & select the event
- reconstruct the top which decays to 3 jets
- two of those jets make the W
- use the W mass to fix the calorimeter energy scale
- b-jet energy scale still somewhat uncertain

CMS: novel approach using J/ ψ and μ

- let one b hadron decay to an energetic J/ ψ (to a muon pair)
- let one W boson decay leptonically (again, to a muon)
- the energies of the muons from the J/ ψ indirectly reflect M_t
- use the invariant mass of the J/ ψ + μ as the observable
- absolutely no systematic from calorimeter energy scales
- There are so many events, this actually works!

what will the future be?

reminder: Tevatron Results

W mass at the LHC

ΔM_{W} = 8 MeV has the same impact as ΔM_{t} = 1 GeV.

- number of events is semi-infinite: $O(10^8)$ for 10 fb⁻¹
- this measurement is all about systematic uncertainties
- develop some of the data-driven approaches from Tevatron
- key: **Z's are like W's** except:
 - they give two charged leptons and no neutrino
 - their mass and width is slightly different
- use Z's to build "templates" for the fit
- after a lot of tuning, leading uncertainties will be:
 - linearity of energy response, calorimeter calibration
 - PDF uncertainties, boson p_T model

Method 1: "Scaled Observables"

The W distribution is proportional to the Z position modified by a known function R:

$$\frac{d\sigma^{W}}{dO^{W}}\Big|_{pred} = \frac{M_{Z}}{M_{W}}R(X)\frac{d\sigma^{Z}}{dO^{Z}}\left(O^{Z} = \frac{M_{Z}}{M_{W}}O^{W}\right)\Big|_{meas}$$

$$R(X) = \frac{d\sigma^{W}}{dX^{W}}/\frac{d\sigma^{Z}}{dX^{Z}} \qquad X^{V} = \frac{O^{V}}{M^{V}}$$

- "O" is an observable, such as lepton p_T or transverse mass M_T .
- "X" is simply "O" scaled by the boson mass (M_W or M_Z , as appropriate).
- R(X) can be calculated accurately from theory it is a <u>ratio</u>.
- Compare the predicted distribution to the observed one; vary M_W to get the best agreement.

Method 2: "Morphing Events"

- Take a reconstructed Z event and turn it into a W boson event:
 - 1. Identify a Z boson through its decay to two muons (or electrons).
 - 2. Boost to the di-muon center-of-mass frame.
 - 3. Rescale the muon momenta according to the Z and W masses (and a small correction for the Z width).
 - 4. Boost back to the lab frame.
 - 5. Simulate the neutrino by throwing out one of the muons.
 - 6. Analyze the event as if it were a W event.
- Compare the M_T distribution from these "morphed" Z events to the M_T distribution of the actual W events.
- Vary the assumed M_W in the Z-morphing part until the best agreement is obtained.

• curves represent "morphed" Z distributions for 3 different M_W

illustration:

• points represent the true M_T distribution for W's

Systematic uncertainties are "orthogonal" for E_T and M_T fits:

susceptible to detector resolution

susceptible to boson p_{T} model

Systematic Uncertainties:

- using real Z's reduces all instrumental uncertainties
- <u>not so easy</u>: linearity of energy response
 - electrons from Z's and from W's have slightly different energies
 - average energy scale is set using Z's as templates
 - excursions to higher or lower energies difficult to control
 - benchmarks from Ψ and J/ ψ decays are problematic
- not so easy: calorimeter scale, needed for MET
 - earlier studies perhaps too pessimistic (2% assumed)
 - Tevatron experience shows that this is very hard
- <u>not so easy</u>: PDF uncertainties
 - they enter through acceptance effects (longitudinal boost)
 - perhaps much better after LHC measurements taken into account?

bottom line:

given 10 fb⁻¹, combining *e* and μ channels:

 $\Delta M_W = 10 \text{ MeV (stat)}$ 20 MeV (syst)

Z FB Asymmetry

A_{FB} and SM-EWK

 $q\overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$

- parity violation in the weak neutral current
- asymmetry of e⁺ direction w.r.t. quark direction
- governed by weak mixing angle $\theta_{\rm W}$
- interference of Z^{*} and γ^* plays key role varies strongly with M_{ee}
- A_{FB} goes through zero at (near) the Z peak
- measurement errors on M_{ee} are a major issue

reminder: Tevatron Results

LHC Electroweak/Schmitt (J. Erler's fit value is 10x better.)

A_{FB} at the LHC

- big problem: which way is the quark going?
- partial answer:
 - if the Z is boosted in one direction that's the direction of q
- only boosted Z's are sufficiently unambiguous
- makes the measurement much harder

- This is perhaps the most difficult measurement at the LHC.
- Neither ATLAS nor CMS have published detailed studies.
- problems:
 - PDF uncertainties are important at large |y|
 - electro-weak corrections, too
 - energy/momentum measurements are less good in end caps
 - charge confusion will be a problem dilutes A_{FB}
 - jet backgrounds are more severe at high |y|
- bottom line:
 - statistical uncertainty on $sin^2\theta_W$: approx 2 x 10⁻⁴ (2 expt's)
 - PDF's & EWK correction might be the dominant uncertainty
 - mass scale & resolution is challenging (need 10x smaller than CDF)
 - a hopeful guess:

$$\Delta sin^2 \theta_W$$
 : approx 3 x 10⁻⁴

(which is somewhat worse than current world average)

How might the LHC <u>and low-energy experiments</u> change this picture?

LHC Electroweak/Schmitt

 Recall: the main point of the LHC is to discover direct signals for new physics – not to do precision measurements such as M_w, M_t, etc.

26-June-2009

- Recall: the main point of the LHC is to discover direct signals for new physics – not to do precision measurements such as M_w, M_t, etc.
- IF we do find a signal, whether it be a narrow di-lepton resonance or mono-jets, we won't be able to say "which" new physics is there.

- Recall: the main point of the LHC is to discover direct signals for new physics – not to do precision measurements such as M_w, M_t, etc.
- IF we do find a signal, whether is be a narrow di-lepton resonance or mono-jets, we won't be able to say "which" new physics is there.
- It may well turn out that precision measurements at low energies will play a key role in elucidating the theory that explains the new physics.

- Recall: the main point of the LHC is to discover direct signals for new physics – not to do precision measurements such as M_w, M_t, etc.
- IF we do find a signal, whether is be a narrow di-lepton resonance or mono-jets, we won't be able to say "which" new physics is there.
- It may well turn out that precision measurements at low energies will play a key role in elucidating the theory that explains the new physics.
- I predict the future will bring together the people at the "precision" and the "high energy" frontiers.

LHC dipoles

- 8.4 T field
- two bores unique
- 11.7 kA current
- superconducting (1.9 deg K, sf He)
- force loading is 400 tonnes per meter
- 14.3 m long
- weight: 35 tonnes
- cost about CHF 500k
- 1232 dipoles around the ring (27 km)

Early studies of event properties

bb angular correlations

bb angular correlations reflect three underlying QCD processes
provide a good test NLO QCD

•measure angular correlation between J/psi and b-> μ (50 pb⁻¹)

lepton isolation: sum of tracks within a cone

Systematic	$W \to e \nu$	$W \to \mu \nu$	Common
$p_T(W) model$	3	3	3
QED radiation	11	12	11
Parton distributions	11	11	11
Lepton energy scale	30	17	17
Lepton energy resolution	9	3	0
Recoil energy scale	9	9	9
Recoil energy resolution	7	7	7
$u_{ }$ efficiency	3	1	0
Lepton removal	8	5	5
Backgrounds	8	9	0
Total systematic	39	27	26
Total uncertainty	62	60	26

systematic uncertainties on the W mass measurement

TABLE II: Systematic and total uncertaint: the m_T fits, which are the most precise. shows the correlated uncertainties.

Source	$\sigma(m_W) { m MeV} m_T$	$\sigma(m_W) { m MeV} p_T^e$	$\sigma(m_W) \operatorname{MeV} E_T$
Experimental			
Electron Energy Scale	34	34	34
Electron Energy Resolution Model	2	2	3
Electron Energy Nonlinearity	4	6	7
W and Z Electron energy	4	4	4
loss differences			
Recoil Model	6	12	20
Electron Efficiencies	5	6	5
Backgrounds	2	5	4
Experimental Total	35	37	41
W production and			
decay model			
PDF	9	11	14
QED	7	7	9
Boson p_T	2	5	2
W model Total	12	14	17
Total	37	40	44

Source of uncertainty	uncertainty	ΔM_W [MeV/c ²]	uncertainty	ΔM_W [MeV/c ²]			
	wi	th 1fb^{-1}	with 10 fb^{-1}				
scaled lepton- $p_{\rm T}$ method applied to $W \rightarrow e\nu$							
statistics	I I I I	40		15			
background	10%	10	2%	2			
electron energy scale	0.25%	10	0.05%	2			
scale linearity	0.00006/GeV	(30)	<0.00002/ GeV	<10			
energy resolution	8%	5	3%	2			
MET scale	2%	15	$<\!\!1.5\%$	<10			
MET resolution	5%	9	<2.5%	< 5			
recoil system	2%	15	$<\!\!1.5\%$	<10			
total instrumental		40		<20			
PDF uncertainties		(20)		<10			
Γ_W		15		<15			
$p_{\mathrm{T}}^{\mathrm{W}}$		30		30 (or NNLO)			

-

_

transformation method applied to $W \rightarrow \mu \nu$						
statistics		40		15		
background	10%	4	2%	negligible		
momentum scale	0.1%	14	< 0.1%	<10		
$1/p^T$ resolution	10%	(30)	<3%	<10		
acceptance definition	η -resol.	19	$< \sigma_{\eta}$	<10		
calorimeter $E_{\rm T}^{\rm miss}$, scale	2%	38	$\leq 1\%$	<20		
calorimeter $E_{\mathrm{T}}^{\mathrm{miss}}$, resolution	5%	30	<3%	$<\!\!18$		
detector alignment		12	—	negligible		
total instrumental		64		<30		
PDF uncertainties		≈ 20		<10		
Γ_W		10		< 10		