### Searches for Narrow di-Muon Resonances at Hadron Colliders

Michael Schmitt Northwestern University



Workshop on Collider Physics Argonne and the University of Chicago May 9, 2006

- motivations
- new techniques from CDF
- traditional Z' searches at the Tevatron
- searches at the LHC
- conclusions

### Introduction & Motivation

This talk will favor an empirical, "bottom-up" approach. I will leave out beautiful theoretical motivations...



### Motivations

*Basic*: We have lots of nice data – unique data – we should look at it in any many ways as we can think of!

*Fancy:* Theorists may talk about light sbottom resonances, or weakly-coupled Z' bosons, *etc. etc...* 

Internal: A hint of a signal was observed in the Run I data.



## A new technique from CDF

### Method

Previously, people binned the mass spectrum and looked for bumps.

If the "signal" falls on the boundary between bins – tough luck!

Physicists have used unbinned fitting methods for years.

#### We should use an unbinned method to hunt for bumps.

What is needed:

- parametrization of the continuum (background)
- parametrization for the bump (signal)
- measure of the significance of any bump that is found, or method to set limits on any signal as a function of its mass...

#### This is what we do, in some detail:

- Parametrize the continuum spectrum in some intuitive way.
- Determine the background parameters by maximizing the likelihood.
- Slide a Gaussian across the mass distribution in small steps (typically, one-half sigma on the mass resolution), and for each step, determine the amplitude which maximizes the likelihood signal+background.
- Compare the NLL (negative log-likelihood) for signal+background to that for the background alone. Call this  $\Delta NLL$ .
- If the improvement is significant, and if the amplitude for the Gaussian is positive, then investigate!!

Implicit assumptions:

- any signal would be narrow compared to the width of the region
- the signal would be small compared to the total BG in the region
- the background has no sharp features within the mass region

### **Data and Event Selection**

#### event selection:

- data taken with a special low- $p_T$  di-muon trigger :  $\approx 200 \text{ pb}^{-1}$
- offline, demand two opposite-sign muons with  $p_T > 5$  GeV and  $M_{\mu\mu} > 3.8$  GeV
- muons must be "isolated" small calorimeter energy in a cone around each muon
- reject cosmic rays using timing information from the drift chamber
- small alignment corrections to remove  $p_T$  bias in the real data

#### muon selection:

- both muons must have good track "stubs" in the muon chambers
- the match to a high-quality drift-chamber track must be good
- muon identification:
  - calorimeter energy consistent with min-I particle
  - impact parameter consistent with the beam line

# Six Mass Ranges

#### • We defined six mass ranges:

three with resonances and three with smooth distributions



- We fit these to appropriate empirical functions.
  - use an unbinned likelihood fit
- Above 200 GeV demands a different technique *in progress*.



# Example: Scanning Region 4

- mass range 13 84 GeV
- parametrize as a sum of three exponentials
- Increasing spacing reflects the quadratic increase of σ<sub>M</sub> with M.
- Dashed lines show the calculated uncertainty on the amplitude.
- No signs of a new peak.







# Feldman-Cousins Prescription

- We have employed the Feldman-Cousins prescription, which is recommended by the PDG and others:
   <u>Gary Feldman & Robert Cousins, Phys. Rev. D57 (1998) 3873</u>
- This allows us to convert an amplitude which can be negative into a number of signal events, which cannot be negative.
- Here is the proto-typical case
- The measured X stands for our amplitude, which may turn out to be negative.
- The parameter μ stands for the number of signal events, which cannot be negative.
- This prescription uses time-honored statistical methods to define "confidence belts" for μ as a function of X.
- Given a value for X, one inverts the map to obtain a range of m values at the given CL.



Search for Narrow di-Muon Resonances

#### This shows the Feldman-Cousins 95% confidence belt for $N_{ev}$

*CDF Run II preliminary*, 195 pb<sup>-1</sup>



Notice there are mass values for which there is a "lower limit". This is to be be expected in the Feldman-Cousins method. At 95% CL, the data do not favor zero signal – this does not mean a signal is present. Notice, also, that where there is a downward fluctuation, the limit on  $N_{ev}$  is not negative.

#### **Obtaining a cross-section:**

- There will be both upper and lower limits, in general.
- set the normalization  $(L \times \varepsilon)$  using the *Z* peak
- take variation of acceptance with mass into account
- take systematics into account
  - various terms are taken to be Gaussian
    - mass-dependent efficiencies
    - mass-dependent acceptance
    - mass resolution
    - overall normalization
  - total varies 8 26 % depending on the mass
  - impact on the limit is not large

#### 95% Feldman-Cousins confidence belts for σ×Br:



#### **Region 2 – special**

(3.8 - 9.1 GeV)

- These events are generally below the trigger threshold.
- The acceptance falls rapidly below about M = 10 GeV.
- Only the high transverse-momentum  $(q_T)$  pairs are accepted.
- The acceptance depends on the process assumed:
  - Drell-Yan like (appropriate perhaps for new gauge bosons)
  - Upsilon like (appropriate perhaps for new bound states)
  - something else?
- CDF is implementing a special low- $p_T$  di-muon trigger to solve this difficulty.
- For now, work with the data that we have, and accept some model-dependence. Keep this in mind!

#### First, consider a Drell-Yan – like process.

95% Feldman-Cousins confidence belt for  $\sigma \times Br$  in region 2:



The peak seen by G. Apollinari *et al.* with Run I data fell at mass 7.25 GeV. Their result works out to  $\sigma \times Br \approx 201$  pb assuming a Drell-Yan – like production process.

#### Search for Narrow di-Muon Resonances

#### If we consider the second model:

plot the limits relative to Y(1S) production.



Search for Narrow di-Muon Resonances

95% Feldman-Cousins confidence belt for  $\sigma \times Br$  for the range 4 – 200 GeV:



### **CDF Run II** preliminary

- Five mass regions have been scanned, encompassing the range 4 GeV up to 200 GeV, for 195 pb<sup>-1</sup>.
- There is no sign of new physics anywhere.
   We have derived cross section limits using Feldman-Cousins.
- The Run I observation at 7.25 GeV is not confirmed.
- We will add more data very soon.
- We will also tackle the region above 200 GeV.

More Traditional Searches for high-mass Z' at the Tevatron





#### **CDF update – preliminary results in the electron channel w/ 819 pb<sup>-1</sup>**



M > 850 GeV at 95% CL, for a sequential Z'

#### Just a quick word about $\tau$ 's ....

Z' decays to tau's are much harder to identify, of course, so this channel does not play a central role in the search for Z' bosons.

That said, it would be extremely important if couplings were not generation-independent!



# **The Cutting Edge**

Suppose we observe a narrow peak at the Tevatron and/or at the LHC. What then?

We do not simply want to test various benchmarks.

A more empirical approach is needed: <u>What kind of Z' is it?</u>

A recent study by *Carena, Daleo, Dobrescu and Tait* (CDDT) leads the way. Phys. Rev. D70 (2004) 093009

Their approach has been presented several times

- time for only one or two points
- in use by CDF in two contexts

CDDT discuss the phenomenology of Z' arising from generic GUT's.

Applying only a few very general theoretical considerations, they identify four distinct "model lines" which cover broad classes of Z' models.

Each model line depends only on a few parameters:

- the mass of the resonance  $(M_{Z'})$
- the overall coupling constant  $(g_z)$
- a free dimensionless parameter, *x*, which determines the fermion charges

Instead of testing 1, or 4, or 6, or 7 different specific Z' models, one places constraints on  $g_z$  and x for a given  $M_{Z'}$ .

This formalism allows constraints from  $e^+e^-$  machines and from hadron colliders to be compared directly.

So far, applications have been made by CDF to:

- forward-backward asymmetry
- cross section limits

#### CDF recent di-electron results:

#### hep-ex/0602045

The forward-backward asymmetry has been measured as a function of  $M_{ee}$ .

The presence of a Z' generally shifts  $A_{FB}$  depending on couplings and the Z' width.

A "model-independent" formulation is quite helpful here...

Including the angular information boosts the sensitivity of the analysis – it is the same as 25% more luminosity (roughly).

#### M > 850 GeV for sequential Z'

(from 448 pb<sup>-1</sup>, same as mass-only search with 819 pb<sup>-1</sup>.)



#### CDF constraints coming from the upper limit on the cross section:

CDDT factorize the cross section in terms of model parameters and kinematic factors:



### **LHC Studies**

#### **LHC Studies**

CMS has emphasized the di-muon channel, at ATLAS, the di-electron channel.

Some (not all) of the simulations have been fairly realistic.

- CMS: include effects of chamber mis-alignment major impact on mass resolution
- ATLAS: include effects of shower correction algorithms including rad've tails

This has already lead to some innovations:

- recognize muons which radiate a lot like electrons (at the TeV scale...)
- delicacy exercised with the electron isolation criteria

Experimentalists are trying to approach the problem of finding and studying di-lepton resonances with several physics scenarios in mind: Z', KK-excitations, etc.

I will restrict my discussion to some particularly interesting developments in CMS, but it should be understood that similar work has been done in ATLAS, too.

#### Here are some examples of imagined signals at the LHC:



#### Is it spin-1 or spin-2? (or even spin-0?)

spin hypothesis testing

R. Cousins et al., JHEP 11 (2005) 046

The angular distribution of the muons in the resonance rest frame is the key:



#### Work with the ratio of likelihoods to test the two hypotheses:



Conclusion: discrimination at 68% CL requires only a few dozen events. Spin-0 is somewhat more difficult, but still resolvable.

#### What about the forward-backward asymmetry, A<sub>FB</sub> ?

R. Cousins et al., CMS NOTE 2005/022

#### **Can help a lot to distinguish – constrain – models.**

Difficult due to acceptance limitations, and mis-tagging at high masses.



### Get a handle on models by pair-wise hypothesis testing:

On-peak  $A_{FB}^{count}$  and  $\sigma^{rec}$ , 1 TeV



 $\mathbf{M} = \mathbf{1} \mathbf{T} \mathbf{e} \mathbf{V}$ 

Pairs of models can be distinguished at the 2 – 4  $\sigma$  level with 10 fb<sup>-1</sup>.

Naturally, higher states require more luminosity.

The constants  $w_u$  and  $w_d$  are different at the LHC and the Tevatron.

Example 
$$(M_{Z'} = 800 \text{ GeV})$$
:  
TEV:  $w_u = 1.134$ ,  $w_d = 0.091$   
LHC:  $w_u = 2404$ ,  $w_d = 1613$ 

x 10

cd

M = 800 GeVు<sup>=0.2</sup> A given Z' model (with mass  $M_{Z'}$  & coupling  $g_{z}$ ) will show up as different contours in the  $(c_w, c_d)$  plane: 0.18 LHC Z+Y LHC Z→11 0.16 The intersection of constraints pins down  $c_{\mu}$  and  $c_{d}$ ! 0.14 0.12 Notice the synergy between Tevatron and LHC! 0.1 TeV Z→ll 0.08 Another option is to consider the reaction 0.06  $pp \rightarrow Z' + \gamma$ 0.04 which tags the u-quarks more than the d-quarks. 0.02 (Work is in progress to obtain fairly realistic estimates of constraints.) 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0

Finally, if a Z' peak could be seen in bb or tt final states, then more constraints result from the comparison of leptonic and hadronic final states.  $\sigma \times Br(Z' \rightarrow bh)$ 



$$R_{b} = \frac{\sigma \times Br(Z' \to bb)}{\sigma \times Br(Z' \to e^{+}e^{-})}$$

There are four model lines.

*Each curve is parametrized by x.* 

As x changes, so do the relative leptonic and hadronic branching ratios:

$$R_{b} = \frac{3(z_{q}^{2} + z_{d}^{2})(1 + \alpha_{s}/\pi)}{z_{l}^{2} + z_{e}^{2}}$$

If  $c_d$  were already known, then this measurement would allow one to infer the value of x.

No study has been made as to the accuracy with which  $R_b$  could be measured.

# Conclusions

Real results on Z' are coming from the Tevatron: the DØ and CDF analyses are in a mature stage. New ideas and techniques are expanding the scope.

Studies for the LHC experiments show impressive capabilities with a "modest" amount of luminosity.

 $\rightarrow$  well past simple parton-level estimates by now !!

The model-independent approach provides an effective platform for combining various data to constrain Z' properties.

 $\rightarrow$  will be advocated for LHC, too !

# **Back-up Slides**

#### $\Delta$ NLL is an indicator for significance:

*NLL* = "negative log-likelihood"

We use a comparison of the NLL to indicate the significance of a given a at a given mass value  $\mu$ .

 $\Delta$ NLL = NLL(background+peak) – NLL(background)

Naturally, one must distinguish a > 0 and a < 0 !

Canonically, for a single mass value,

 $\Delta NLL = 0.5$  corresponds to  $1\sigma$   $\Delta NLL = 2.0$  corresponds to  $2\sigma$   $\Delta NLL = 4.5$  corresponds to  $3\sigma$  $\Delta NLL = 12.5$  corresponds to  $5\sigma$ 

However, when scanning a given mass range, one must take into account the dilution factor.



- ◆ 110 pb<sup>-1</sup> from Run I
- ◆ events in peak: 250 ± 61
- some special cuts to clean the sample

$$\frac{\sigma \times Br(\epsilon \to \mu \,\mu)}{\sigma \times Br(\gamma \to \mu \,\mu)} = (3.6 \pm 0.9)\%$$

Search for Narrow di-Muon Resonances

- would expect about 30 events
- sample not cleaned

$$\frac{\sigma \times Br(\epsilon \to \mu \,\mu)}{\sigma \times Br(\gamma \to \mu \,\mu)} < 1.6\%$$

at 95% CL

#### Suppose the "peak" at 5.92 GeV were a signal:



Search for Narrow di-Muon Resonances, 9-Mar-2006

### Acceptance Estimate

- We used a generator-simulation and applied simple kinematic and geometric cuts to estimate the acceptance vs. mass.
- ◆ We have shown elsewhere that this seems to agree well with full simulation.



Search for Narrow di-Muon Resonances, 23-March-2006