Search for Narrow di-Muon Resonances

Tevatron Run II

Michael Schmitt (Northwestern) for the CDF Collaboration

- motivations
- unbinned likelihood technique
- data sample and event selection
- scanning for bumps
- cross-section limits
- summary and conclusions

APS April Meeting April 22, 2006

Search for Narrow di-Muon Resonances

Motivations

Basic: We have lots of nice data – unique data – we should look at it in any many ways as we can think of!

Fancy: Theorists may talk about light sbottom resonances, or weakly-coupled Z' bosons, *etc. etc...*

Internal: A hint of a signal was observed in the Run I data.

Method

Previously, people binned the mass spectrum and looked for bumps.

If the "signal" falls on the boundary between bins – tough luck!

Physicists have used unbinned fitting methods for years.

We should use an unbinned method to hunt for bumps.

What is needed:

- parametrization of the continuum (background)
- parametrization for the bump (signal)
- measure of the significance of any bump that is found, or method to set limits on any signal as a function of its mass...

This is what we do, in some detail:

- Parametrize the continuum spectrum in some intuitive way.
- Determine the background parameters by maximizing the likelihood.
- Slide a Gaussian across the mass distribution in small steps (typically, one-half sigma on the mass resolution), and for each step, determine the amplitude which maximizes the likelihood signal+background.
- Compare the NLL (negative log-likelihood) for signal+background to that for the background alone. Call this ΔNLL .
- If the improvement is significant, and if the amplitude for the Gaussian is positive, then investigate!!

Implicit assumptions:

- any signal would be narrow compared to the width of the region
- the signal would be small compared to the total BG in the region
- the background has no sharp features within the mass region

Δ NLL is an indicator for significance:

NLL = "negative log-likelihood"

We use a comparison of the NLL to indicate the significance of a given a at a given mass value μ .

 $\Delta NLL = NLL(background+peak) - NLL(background)$

Naturally, one must distinguish a > 0 and a < 0 !

Canonically, for a single mass value,

 $\Delta NLL = 0.5$ corresponds to 1σ $\Delta NLL = 2.0$ corresponds to 2σ $\Delta NLL = 4.5$ corresponds to 3σ $\Delta NLL = 12.5$ corresponds to 5σ

However, when scanning a given mass range, one must take into account the dilution factor.

Data and Event Selection

event selection:

- data taken with a special low- p_T di-muon trigger : $\approx 200 \text{ pb}^{-1}$
- offline, demand two opposite-sign muons with $p_T > 5$ GeV and $M_{\mu\mu} > 3.8$ GeV
- muons must be "isolated" small calorimeter energy in a cone around each muon
- reject cosmic rays using timing information from the drift chamber
- small alignment corrections to remove p_T bias in the real data

muon selection:

- both muons must have good track "stubs" in the muon chambers
- the match to a high-quality drift-chamber track must be good
- muon identification:
 - calorimeter energy consistent with min-I particle
 - impact parameter consistent with the beam line

Six Mass Ranges

• We defined six mass ranges:

three with resonances and three with smooth distributions

- We fit these to appropriate empirical functions.
 - use an unbinned likelihood fit
- Above 200 GeV demands a different technique *in progress*.

Example: Scanning Region 4

- mass range 13 84 GeV
- parametrize as a sum of three exponentials
- Increasing spacing reflects the quadratic increase of σ_M with M.
- Dashed lines show the calculated uncertainty on the amplitude.
- No signs of a new peak.

Search for Narrow di-Muon Resonances

Feldman-Cousins Prescription

- We have employed the Feldman-Cousins prescription, which is recommended by the PDG and others:
 <u>Gary Feldman & Robert Cousins, Phys. Rev. D57 (1998) 3873</u>
- This allows us to convert an amplitude which can be negative into a number of signal events, which cannot be negative.
- Here is the proto-typical case
- The measured X stands for our amplitude, which may turn out to be negative.
- The parameter µ stands for the number of signal events, which cannot be negative.
- This prescription uses time-honored statistical methods to define "confidence belts" for μ as a function of X.
- Given a value for X, one inverts the map to obtain a range of m values at the given CL.

Search for Narrow di-Muon Resonances

This shows the Feldman-Cousins 95% confidence belt for N_{ev}

CDF Run II preliminary, 195 pb⁻¹

Notice there are mass values for which there is a "lower limit". This is to be be expected in the Feldman-Cousins method. At 95% CL, the data do not favor zero signal – this does not mean a signal is present. Notice, also, that where there is a downward fluctuation, the limit on N_{ev} is not negative.

Obtaining a cross-section:

- There will be both upper and lower limits, in general.
- set the normalization $(L \times \varepsilon)$ using the *Z* peak
- take variation of acceptance with mass into account
- take systematics into account
 - various terms are taken to be Gaussian
 - mass-dependent efficiencies
 - mass-dependent acceptance
 - mass resolution
 - overall normalization
 - total varies 8 26 % depending on the mass
 - impact on the limit is not large

95% Feldman-Cousins confidence belts for σ×Br:

Region 2 – special

(3.8 - 9.1 GeV)

- These events are generally below the trigger threshold.
- The acceptance falls rapidly below about M = 10 GeV.
- Only the high transverse-momentum (q_T) pairs are accepted.
- The acceptance depends on the process assumed:
 - Drell-Yan like (appropriate perhaps for new gauge bosons)
 - Upsilon like (appropriate perhaps for new bound states)
 - something else?
- CDF is implementing a special low- p_T di-muon trigger to solve this difficulty.
- For now, work with the data that we have, and accept some model-dependence. Keep this in mind!

First, consider a Drell-Yan – like process.

95% Feldman-Cousins confidence belt for $\sigma \times Br$ in region 2:

The peak seen by G. Apollinari *et al.* with Run I data fell at mass 7.25 GeV. Their result works out to $\sigma \times Br \approx 201$ pb assuming a Drell-Yan – like production process.

Search for Narrow di-Muon Resonances

If we consider the second model: plot the limits relative to Y(1S) production. CDF Run II preliminary, 195 pb⁻¹ 0.2 limits relative to Y(1S) 0.15 0.1 G. Apollinari et al. 0.036 ± 0.009 0.05 0 5 3 8 9 10 6 4 mass (GeV) $\frac{\sigma \times Br(x \to \mu^+ \mu^-)}{\sigma \times Br(Y(1S) \to \mu^+ \mu^-)} < 0.018$ at 95% CL

Search for Narrow di-Muon Resonances

- ◆ events in peak: 250 ± 61
- some special cuts to clean the sample

$$\frac{\sigma \times Br(\epsilon \to \mu \,\mu)}{\sigma \times Br(Y \to \mu \,\mu)} = (3.6 \pm 0.9)\%$$

Search for Narrow di-Muon Resonances

- would expect about 30 events
- sample not cleaned

$$\frac{\sigma \times Br(\epsilon \to \mu \,\mu)}{\sigma \times Br(Y \to \mu \,\mu)} < 1.6\%$$

at 95% CL

95% Feldman-Cousins confidence belt for $\sigma \times Br$ for the range 4 – 200 GeV:

Summary & Conclusions

CDF Run II preliminary

- Five mass regions have been scanned, encompassing the range 4 GeV up to 200 GeV, for 195 pb⁻¹.
- There is no sign of new physics anywhere.
 We have derived cross section limits using Feldman-Cousins.
- The Run I observation at 7.25 GeV is not confirmed.
- We will add more data very soon.
- We will also tackle the region above 200 GeV.

Back-up Slides

Suppose the "peak" at 5.92 GeV were a signal:

Search for Narrow di-Muon Resonances, 9-Mar-2006

Acceptance Estimate

- We used a generator-simulation and applied simple kinematic and geometric cuts to estimate the acceptance vs. mass.
- ◆ We have shown elsewhere that this seems to agree well with full simulation.

*cdf*7560

Check the fitted masses:

fit	PDG	ratio
3.0864 ± 0.0005 GeV	3.0969 GeV	0.997
3.6742 ± 0.0020 GeV	3.6860 GeV	0.997
9.4291 ± 0.0008 GeV	9.4603 GeV	0.997
9.9951 ± 0.0019 GeV	10.0233 GeV	0.997
10.325 ± 0.002 GeV	10.356 GeV	0.997

Normalization:

- statistical uncertainty is 1.7%
- systematic error on the measurement of $\sigma(Z)$ is 2.2%
- we ignore the uncertainty on the luminosity since this cancels out
- total uncertainty is 2.8% for all masses

Efficiency:

- sliding ΔX and isolation cuts reduce/remove p_T dependence of ID efficiency
- assume 1% for $p_T > 10 \text{ GeV}$
- not tested for $p_T < 10 \text{ GeV} \text{assign a conservative 5\% uncertainty}$
- the uncertainty as a function of mass will be, roughly, twice that.

Search for Narrow di-Muon Resonances, 23-Mar-2006

Acceptance:

- since we normalize to the Z-peak, absolute acceptance does not matter
- uncertainties would come from PDF's and veracity of the theory
- in cdf7560 we evaluated the PDF uncertainty using CTEQ6M
- we verified the generator-level PYTHIA distribution using REBOS, PHOZPRMS
- still need to repeat these studies for $M_{\mu\mu} < 20 \text{ GeV}$
- assign linearly decreasing uncertainty: typ. 6% region 2, 3% region 4, 2% region 6

Mass Resolution:

- detailed MC studies of mass resolution were carried out for cdf7560
- conservative variations of tails: 3% uncertainty on yields for $M_{\mu\mu} > 20 \text{ GeV}$
- use known resonances for explicit tests:
 - J/psi: fitted width 0.024 GeV, predicted 0.024 GeV
 - Y(1S): fitted width 0.060 GeV, predicted 0.061 GeV
 - Z-peak: fitted width 2.0 GeV, predicted 1.4 GeV

Overall Systematic Uncertainty:

• add these together in quadrature to obtain a total systematic uncertainty:

Impact:

- given definition of the cross section, syst unc κ adds in quadrature to ampl. unc.
- input "X" to Feldman-Cousins is increased by about $(1 + \kappa)$
- impact on cross section limits is about $(1 + \kappa)$ too.

Narrow di-Muon Resonances

Number of events in this region: 12349
Number of Y(1S): 3134, acc: fit.
Check yield by counting and simple sideband subtraction: 3165 ± 61.
"purity" is 0.091

Count events in 3σ window around 7.25 GeV: 82 predicted: 90 Simple upper limit: $(82-90) + 1.96 \times \sqrt{(90)} = 10.6$ Feldman-Cousins gives 12.

acceptance at 9.34 GeV: 0.0060 acceptance at 7.25 GeV: 0.0015

 $\frac{\sigma \times Br(\epsilon \to \mu \,\mu)}{\sigma \times Br(\gamma \to \mu \,\mu)} = \frac{12}{3134} \times \frac{0.0060}{0.0015} = 0.015$

If you inflate this by 20% for mass resolution: 0.018.

Narrow di-Muon Resonances