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Introduction & Motivation

This talk will favor an empirical, “bottom-up’ approach.
I will ignore beautiful theoretical motivations...

Here are two “views” of what Z' is:
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We will assume spin-1 and negligible lifetime -
this would have to be confirmed by real data, of course...
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Four Approaches to the Data

(1) Look for a numerical excess above the Drell-Yan continuum.

Choose a minimum di-lepton mass, compare Nypg t0 Neyp.

(2) Test specific models using mass templates

These serve as benchmarks: Zgg,,, various Eq GUT incarnations, little Higgs Z!

(3) New: attempt a (more) model-independent approach
Spurred by Carena, Daleo, Dobrescu & Tait: Phys. Rev. D70 (2004) 093009 - “CDDT”

(4) Revived: Simple Bump Hunting!

Absolutely no theory at all — just statistical techniques.



Experimental Synopsis

Select events with two 1solated high-p leptons of the same flavor (e or |) and opposite charge.

Examine the di-lepton invariant mass distribution:
- dominated by the Z peak and Drell-Yan
- worry about fake leptons
* QCD di-jets with two jets looking like leptons
* W + jet(s) with a leptonic W decay and one jet looking like a lepton
* v+ jet(s) with the photon looking like an electron and the jet faking an electron
- “electroweak’ backgrounds (WW, WZ, 7ZZ, tt) are tiny and can be estimated w/ simulations

If you find a peak, then
1. quantify its significance
2. measure the production rate: & x BR

If you don't find a peak, then
1. derive an upper limit on the production rate: ¢ x BR
2. constrain popular models or better, constrain combinations of couplings and charges
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Here are some examples of imagined signals at the LHC:

ATLAS, di-electrons PUB-2005-010 CMS, di-muons, 10 fb-1, NOTE 2005/002
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How do DO and CDF Set Limits?

First, is there any overall excess?

minimum mass CDF ee CDF mm DO mm
exp. obs. exp. obs. exp. obs.
150 213 +/- 99 205 55 +/- 2 58 85 73
200 78 +/- 33 84 21 +/- 1 18 - -
210 - - - - 25 24
300 14 +/- 4 22 52 +/-0.3 6 6.4 5

If not, then compute the upper limit on the signal:

* define mass windows assuming very small natural width
e compute the 95% CL upper limit on the number of signal events

* convertinto © X BR using acceptance and efficiency estimates

* combine e and [ channels

From the point of view of the experimenter, this is the end result!

e one might compare this to (6 X BR),0de1 X  tO constrain the model...

(but the models are not the important thing, (¢ x BR) 1is....)



Actual
upper limits on Z' production

D@ works with the ratio of signal
to SM Z cross sections.

Both experiments achieve
6xBR < 24fb at95% CL
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Events / 5 GeV/c?

Just a quick word about T's ....

Z! decays to tau's are much harder to identify, of course, so this channel does

not play a central role in the search for Z' bosons.

That said, it would be extremely important if couplings were not generation-independent!
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CMS has emphasized the di-muon channel, at ATLAS, the di-electron channel.

This reflects the relative strengths of the two detectors vis-a-vis resolution.

Some (not all) of the simulations have been fairly realistic.

* CMS: include effects of chamber mis-alignment — major impact on mass resolution
e ATLAS: include effects of shower correction algorithms including rad've tails

This has already lead to some innovations:

* recognize muons which radiate a lot like electrons (at the TeV scale...)
* delicacy exercised with the electron isolation criteria

Of course there are estimates of mass reach and of the luminosity required for discovery.

Roughly speaking, 100 fb—1 gets you in the 5 TeV mass region.
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Lessons & Challenges

lepton reconstruction and selection:

* “loose” selections helped a lot to boost acceptance
* has this been pursued yet, for the LHC?
* isolation criteria are crucial at the Tevatron
* will this be a complicated issue at the LHC?
* new problems at LHC, such as the behavior of TeV muons
* methods to measure efficiencies directly from data

e how will we extrapolate from high to very high pr?

energy and momentum scale:

* how to extrapolate scale set by the Z peak to high scales?
* [inearity of the calorimeter & tracker is the issue

* tails of the resolution function are crucial — how to keep them under control?
* can apply clever techniques such as momentum balance devised by D@
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background estimation:

* Drell-Yan constitutes 90 — 95 %, so shape must be understood well!
* Tevatron uses Z-peak for normalization
* can this work at the LHC?
* must use mass-dependent K-factors
* can the Tevatron verify these?
* PDF's influence level and shape
* Tevatron constraints will improve
* LHC will also provide constraints
* methods to quantify uncertainties
* clectroweak corrections are predicted to be large (U. Baur)
* can these be verified using Tevatron data?
* QCD events, producing 1 or 2 fake leptons
* not to be estimated from simulation!
* not easy to estimate from the data: pitfalls
* same-sign methods require charge correlation — not obvious
* fake rates can be biased by selection criteria

e electroweak backgrounds are very small — use simulations

13



Azuelos & Polesello, Eur. Phys. J C39, s2, s1 (2004)
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detector stability and simulation:

* LHC will use a wealth of test beam data
* plans for in situ calibrations under development

* must specify necessary triggers to collect calibration data
* much harder to tune the underlying event, and pile-up

* studies and tunes with Tevatron data should be most useful

statistical methods:

how to integrate over the systematic uncertainties?

how to correlate uncertainties between channels

challenge for discovery may be trickier than for limits

eventually we hope to be making measurements!
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Perhaps the easiest approach is just to “bump hunt.”

This approach is under development at CDF and CMS.

* Parametrize the background in some intuitive way.
* Determine the background parameters by maximizing the likelihood for the background.

* Slide a Gaussian across a given region in small steps (typically, one sigma on the mass
resolution), and for each step, determine the amplitude which maximizes a
signal+background likelihood.

* Compare the NLL (negative log-likelihood) for signal+background to that for the
background alone.

* If the improvement is significant, and if the amplitude for the Gaussian is positive,
then investigate!!
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Fitting for a peak + background:

Given a description of the background, we can look for a peak at some
(arbitrary) spot within the mass range.

We use a single Gaussian with width = mass resolution, and use the
amplitude to indicate whether a signal 1s present or not.

P(z)=aG(z,0)+ (1 —a)B(z)

The Gaussian G(x,0) and the background B(x) are normalized to unity.

For each arbitrary mass value U, we find the value for a which optimizes
the probability (NLL).

A positive value for a which 1s significantly different from zero
indicates a real peak.

17



ANLL as an indicator for significance:

NLL = “negative log-likelihood”

We use a comparison of the NLL to indicate the
significance of a given a at a given mass value L.

ANLL = NLL(background+peak) — NLL(background)

Canonically,
ANLL = 0.5
ANLL = 2.0
ANLL = 4.5
ANLL =12.5

corresponds to
corresponds to
corresponds to
corresponds to

lo
20
30
50

Naturally, one must distinguish between a >0 and a<0 !
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How do we assess the significance of any bump?

The issue is that we have many opportunities to catch an upward

fluctuation of the background.
The canonical statement ANLL = G62/2 applies to just one “trial.”

If a given interval is spanned by N steps of
(the mass resolution), then the probability to

observe a given ANLL is increased roughly by N/4.

probability

probability for the background to fluctuate
upward and produce a given ANLL

distribution of ANLL
from toy MC
(positive amplitude only)

g \\\\ \
NN \\\\ \J\i‘mn

Naturally this depends on the given range and the mass resolution. 20



The Cutting Edge

Suppose we observe a narrow peak at the Tevatron and/or at the LHC. What then?

We do not simply want to test various benchmarks.

A more empirical approach is needed: What kind of Z' is it?

A recent study by Carena, Daleo, Dobrescu and Tait (CDDT) leads the way.
Phys. Rev. D70 (2004) 093009

Their approach has been presented several times
- time for only one or two points
- in use by CDF in two contexts
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CDDT discuss the phenomenology of Z' arising from generic GUT's.

Applying only a few very general theoretical considerations, they identify
four distinct “model lines” which cover broad classes of Z' models.

Each model line depends only on a few parameters:
e the mass of the resonance (My)

e the overall coupling constant (g,)
* a free dimensionless parameter, x, which determines the fermion charges

Instead of testing 1, or 4, or 6, or 7 different specific Z' models,
one places constraintson g, and x foragiven My

This formalism allows constraints from e*e— machines and from hadron colliders
to be compared directly.

So far, applications have been made by CDF to:
* forward-backward asymmetry
* cross section limits

22
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CDF constraints coming from the upper limit on the cross section:

CDDT factorize the cross section in terms of model parameters and kinematic factors:

T

O'(Z’):E

C, =8 (z3+zi’d) Br(Z'—11)

The factors w, and w,; encapsulate the integrals

over the parton fluxes.

They can be computed and depend only on the PDF's. 10 -

An upper limit on ©(Z’) translates directly into

limits on the “charge factors” ¢, and c,.
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The constants w,, and w, are different at the LHC and the Tevatron.

TEV: w,=1.134, wy=0.091

Example (M7 = 800 GeV):
LHC: w,=2404, wy=1613

%l M = 800 GeV
A given 7' model (Wlth mass MZ' & Coupﬁng gZ) B o, IR T ama a Le U T
will show up as different contours in the (c,,c;) plane: UD i \
‘-.:".,LHC Z—l
The intersection of constraints pins down ¢, and ¢ ! 0.16 A\
0.14
Notice the synergy between Tevatron and LHC! B2
{1 <22
Another option is to consider the reaction 0.8
0.06
pp—Z'+y
. 0.04
which tags the u-quarks more than the d-quarks.
0.02
(Work is in progress to obtain fairly realistic estimates of constraints.) 0 W™

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

C4
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Finally, if a Z' peak could be seenin bb or tt final states, then more constraints result
from the comparison of leptonic and hadronic final states. o X Br(Z'— bb)

s ST T T T Z T S " GXBr(Z'—e e )

There are four model lines.
Each curve is parametrized by x.

As x changes, so do the relative
leptonic and hadronic branching ratios:

:3(Zz—|—z2)(1+o<sl1r)

b

-3

2 2
Zl +Ze

If c; were already known, then this

1 ‘ = measurement would allow one to
| infer the value of x.

\

0 ! No study has been made as to the accuracy with
which R, could be measured.
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Conclusions

Real results on Z' are coming from the Tevatron:
the D@ and CDF analyses are in a mature stage.

Experience gained gives valuable lessons for the LHC,
and challenges at the LHC could be mitigated with Tevatron studies.

The model-independent approach provides an effective platform
for combining various data to constrain Z' properties.
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