Limits on New Physics from Γ_W

- Current Data & Extrapolations
- CKM Matrix Elements
- New Particles
- Shifted Couplings
- Concluding Remarks

Victoria Martin
Michael Schmitt
Northwestern University

DPF 2003

Philadelphia 8-April-2003

Summary of Current Data

Moderately precise measurements of Γ_W come from three sources:

1	LEP 2	2150 ± 91		lineshape
2	Tevatron 'direct'	2115 ± 105	Run 1	high mass lineshape
3	Tevatron 'indirect'	2171 ± 52	Run 1	$R: p\bar{p} \to W \to \ell\nu \ / \ p\bar{p} \to Z \to \ell\ell$
		2154 ± 68	Run 2	

The LEP 2 results are derived by the LEPEWWG. (See hep-ex/0212036 Dec-2002)

A preliminary combination of the Run 1 results is given in Fermilab-FN-0716.

The new Run 2 results are to be presented here at DPF!

CDF 2146
$$\pm$$
 78 MeV \rightarrow G. Manca & A. Varganov DØ(*) 2178 \pm 137 MeV \rightarrow G. Steinbrueck

Interesting Point: All of these values fall above the SM expectation – $\Gamma_W^{\rm SM} = 2092.1 \pm 2.5 \; {\rm MeV}.$

(*) We have calculated Γ_W from the public $D\emptyset$ σ measurements in the electron channel.

Three distinctly different methods lead to values falling above the SM expectation (yellow band).

We have combined all these measurements to obtain:

$$\Gamma_W^{\rm NWU} = 2156 \pm 36~{\rm MeV}$$

We want to compare to $\Gamma_W^{\rm SM} = 2092 \pm 2 \ {\rm MeV}.$

The difference is $\Delta\Gamma = 64 \pm 36 \text{ MeV},$ which is 1.8σ above zero.

The 95% CL interval is $-6 < \Delta \Gamma < 135 \text{ MeV},$ and the upper limit is

 $\Gamma_W^{\text{new}} < 123 \text{ MeV}.$

What are the ingredients to Γ_W ?

Total = Leptonic + Hadronic

$$\Gamma_W = 3\Gamma_W^0 + 3\left(1 + \frac{\alpha_s}{\pi}\right) \sum_{\text{[no top]}} |V_{q\,q'}|^2 \Gamma_W^0$$

$$\Gamma_W^0 = \frac{1}{48} g^2 M_W$$

points of interest:

- sum over *some* CKM matrix elements
- possibility of additional decay channels
- coupling constant g and mass M_W

CKM Matrix Elements

Only the first two rows contribute -ud us cd cs ub cbThe last two are much smaller than the others.

Taking the current values from the RPP, error analysis shows that V_{cs} contributes nearly all of the uncertainty to the sum $\sum_{[\text{no top}]} |V_{q\,q'}|^2$.

By those numbers, $\sum_{\text{[no top]}} |V_{q\,q'}|^2 = 2.040 \pm 0.027$, which is consistent with 2.

Can the measured value of Γ_W help test this sum rule?

 \longrightarrow Can Γ_W be used to constrain V_{cs} ?

We compute Γ_W with V_{cs} as a free parameter and compare to $\Gamma_W^{\rm meas}$ with a χ^2 test.

The inferred value $V_{cs} = 1.022 \pm 0.025$ is consistent with the PDG value $V_{cs} = 0.996 \pm 0.013$.

Combining them, we obtain $V_{cs} = 1.00 \pm 0.012$.

If the uncertainty on Γ_W were reduced to 10 MeV, V_{cs} could be 'measured' to $\delta V_{cs} \sim 0.007$.

New Particles

We consider two possibilities: fermions or scalars.

Consider $W \to XY$ where X and Y have the quantum numbers of a fourth generation lepton pair.

Sensitivity is in the 30-60 GeV range with no assumptions about how these events would appear in the detector.

The actual upper limit is much higher than expected because Γ_W^{meas} is significantly higher than Γ_W^{SM} .

Decays to scalars are phase space supressed relative to fermions. In some specific cases, however, there can be a large enhancement from $N_{\rm color}$.

Consider $W \to \tilde{t}_1 \tilde{b}_1^*$ where \tilde{t}_1 and \tilde{b}_1 are the lightest scalar partners of the top and bottom quarks.

The partial width can be relatively large. But if one asks for a complete decoupling of both squarks from the Z boson, there is a factor 25 suppression due to the field content of the squarks.

The partial widths for $\tilde{\tau}_1 \tilde{\nu}_{\tau}$ are about $3 \times \Gamma_{\tilde{t}\tilde{b}}$ when decoupled from the Z.

A Shift in the Coupling Constant?

It is interesting that both $\Gamma_W^{\rm meas}$ and $M_W^{\rm meas}$ are 'high.'

Notice $\Gamma_W \sim g^2 M_W$.

Linear rescaling does not bring $\Gamma_W^{\rm meas}$ into agreement with $\Gamma_W^{\rm SM}$.

Suppose mixing of the W with a higher mass W' state increases the coupling of the W to SM fermions.

The increase in g would have to be around 1.5%. Is it possible to attain this while respecting the good agreement for Γ_Z ?

 \longrightarrow a challenge for model builders...

Prospects for Better Measurements

- Run II Indirect Method:
 - * statistical uncertainty will decrease
 - * main systematic is recoil model →

 presently conservatively estimated will improve
 - \star analysis could be optimized for Γ_W

$$\delta\Gamma_W^{\mathrm{indir}} \sim 40 \ \mathrm{MeV}$$

- Run II Direct Method:
 - ★ relatively weak measurement in Run 1
 - * requires high statistics & systematics are challenging
 - * WG on precision measurements estimated (hep-ex/0011009)

$$\delta\Gamma_W^{\rm dir} \sim 40~{\rm MeV~for~2~fb^{-1}}$$

- hope for WA $\delta\Gamma_W \sim 25$ MeV by end of Run IIa
- Giga-Z machine likely to make a much better measurement.

Summary and Conclusions

- Γ_W is almost 2σ above the SM expectation
 - \star all measurements are high \Rightarrow not a systematic effect?
 - \rightarrow interesting but not yet exciting
- Measurements of Γ_W are rapidly improving.
 - * systematic uncertainties in latest preliminary results are conservatively estimated
 - * uncertainties will continue to decrease with luminosity
- We welcome more input from our theorist friends!*

^{*} Thanks for discussions with Heather Logan & Tim Tait.