Limits on New Physics from Γ_W - Current Data & Extrapolations - CKM Matrix Elements - New Particles - Shifted Couplings - Concluding Remarks Victoria Martin Michael Schmitt Northwestern University #### **DPF 2003** Philadelphia 8-April-2003 ### Summary of Current Data Moderately precise measurements of Γ_W come from three sources: | 1 | LEP 2 | 2150 ± 91 | | lineshape | |---|---------------------|----------------|-------|---| | 2 | Tevatron 'direct' | 2115 ± 105 | Run 1 | high mass lineshape | | 3 | Tevatron 'indirect' | 2171 ± 52 | Run 1 | $R: p\bar{p} \to W \to \ell\nu \ / \ p\bar{p} \to Z \to \ell\ell$ | | | | 2154 ± 68 | Run 2 | | The LEP 2 results are derived by the LEPEWWG. (See hep-ex/0212036 Dec-2002) A preliminary combination of the Run 1 results is given in Fermilab-FN-0716. The new Run 2 results are to be presented here at DPF! CDF 2146 $$\pm$$ 78 MeV \rightarrow G. Manca & A. Varganov DØ(*) 2178 \pm 137 MeV \rightarrow G. Steinbrueck Interesting Point: All of these values fall above the SM expectation – $\Gamma_W^{\rm SM} = 2092.1 \pm 2.5 \; {\rm MeV}.$ (*) We have calculated Γ_W from the public $D\emptyset$ σ measurements in the electron channel. Three distinctly different methods lead to values falling above the SM expectation (yellow band). We have combined all these measurements to obtain: $$\Gamma_W^{\rm NWU} = 2156 \pm 36~{\rm MeV}$$ We want to compare to $\Gamma_W^{\rm SM} = 2092 \pm 2 \ {\rm MeV}.$ The difference is $\Delta\Gamma = 64 \pm 36 \text{ MeV},$ which is 1.8σ above zero. The 95% CL interval is $-6 < \Delta \Gamma < 135 \text{ MeV},$ and the upper limit is $\Gamma_W^{\text{new}} < 123 \text{ MeV}.$ What are the ingredients to Γ_W ? Total = Leptonic + Hadronic $$\Gamma_W = 3\Gamma_W^0 + 3\left(1 + \frac{\alpha_s}{\pi}\right) \sum_{\text{[no top]}} |V_{q\,q'}|^2 \Gamma_W^0$$ $$\Gamma_W^0 = \frac{1}{48} g^2 M_W$$ points of interest: - sum over *some* CKM matrix elements - possibility of additional decay channels - coupling constant g and mass M_W #### CKM Matrix Elements Only the first two rows contribute -ud us cd cs ub cbThe last two are much smaller than the others. Taking the current values from the RPP, error analysis shows that V_{cs} contributes nearly all of the uncertainty to the sum $\sum_{[\text{no top}]} |V_{q\,q'}|^2$. By those numbers, $\sum_{\text{[no top]}} |V_{q\,q'}|^2 = 2.040 \pm 0.027$, which is consistent with 2. Can the measured value of Γ_W help test this sum rule? \longrightarrow Can Γ_W be used to constrain V_{cs} ? We compute Γ_W with V_{cs} as a free parameter and compare to $\Gamma_W^{\rm meas}$ with a χ^2 test. The inferred value $V_{cs} = 1.022 \pm 0.025$ is consistent with the PDG value $V_{cs} = 0.996 \pm 0.013$. Combining them, we obtain $V_{cs} = 1.00 \pm 0.012$. If the uncertainty on Γ_W were reduced to 10 MeV, V_{cs} could be 'measured' to $\delta V_{cs} \sim 0.007$. #### New Particles We consider two possibilities: fermions or scalars. Consider $W \to XY$ where X and Y have the quantum numbers of a fourth generation lepton pair. Sensitivity is in the 30-60 GeV range with no assumptions about how these events would appear in the detector. The actual upper limit is much higher than expected because Γ_W^{meas} is significantly higher than Γ_W^{SM} . Decays to scalars are phase space supressed relative to fermions. In some specific cases, however, there can be a large enhancement from $N_{\rm color}$. Consider $W \to \tilde{t}_1 \tilde{b}_1^*$ where \tilde{t}_1 and \tilde{b}_1 are the lightest scalar partners of the top and bottom quarks. The partial width can be relatively large. But if one asks for a complete decoupling of both squarks from the Z boson, there is a factor 25 suppression due to the field content of the squarks. The partial widths for $\tilde{\tau}_1 \tilde{\nu}_{\tau}$ are about $3 \times \Gamma_{\tilde{t}\tilde{b}}$ when decoupled from the Z. ## A Shift in the Coupling Constant? It is interesting that both $\Gamma_W^{\rm meas}$ and $M_W^{\rm meas}$ are 'high.' Notice $\Gamma_W \sim g^2 M_W$. Linear rescaling does not bring $\Gamma_W^{\rm meas}$ into agreement with $\Gamma_W^{\rm SM}$. Suppose mixing of the W with a higher mass W' state increases the coupling of the W to SM fermions. The increase in g would have to be around 1.5%. Is it possible to attain this while respecting the good agreement for Γ_Z ? \longrightarrow a challenge for model builders... ## Prospects for Better Measurements - Run II Indirect Method: - * statistical uncertainty will decrease - * main systematic is recoil model → presently conservatively estimated will improve - \star analysis could be optimized for Γ_W $$\delta\Gamma_W^{\mathrm{indir}} \sim 40 \ \mathrm{MeV}$$ - Run II Direct Method: - ★ relatively weak measurement in Run 1 - * requires high statistics & systematics are challenging - * WG on precision measurements estimated (hep-ex/0011009) $$\delta\Gamma_W^{\rm dir} \sim 40~{\rm MeV~for~2~fb^{-1}}$$ - hope for WA $\delta\Gamma_W \sim 25$ MeV by end of Run IIa - Giga-Z machine likely to make a much better measurement. ### Summary and Conclusions - Γ_W is almost 2σ above the SM expectation - \star all measurements are high \Rightarrow not a systematic effect? - \rightarrow interesting but not yet exciting - Measurements of Γ_W are rapidly improving. - * systematic uncertainties in latest preliminary results are conservatively estimated - * uncertainties will continue to decrease with luminosity - We welcome more input from our theorist friends!* ^{*} Thanks for discussions with Heather Logan & Tim Tait.